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Properties of single- and two-point moment generating functions (MGFs) are
examined in the inertial region of wall-bounded flows. Empirical evidence for
power-law scaling of the single-point MGF 〈exp(qu+)〉 (where u+ is the normalized
streamwise velocity fluctuation and q a real parameter) with respect to the wall-normal
distance is presented, based on hot-wire data from a Reτ = 13 000 boundary-layer
experiment. The parameter q serves as a ‘dial’ to emphasize different parts of
the signal such as high- and low-speed regions, for positive and negative values
of q, respectively. Power-law scaling 〈exp(qu+)〉 ∼ (z/δ)−τ(q) can be related to the
generalized logarithmic laws previously observed in higher-order moments, such as in
〈u+2p〉1/p, but provide additional information not available through traditional moments
if considering q values away from the origin. For two-point MGFs, the scalings in
〈exp[qu+(x) + q′u+(x + r)]〉 with respect to z and streamwise displacement r in the
logarithmic region are investigated. The special case q′ =−q is of particular interest,
since this choice emphasizes rare events with high and low speeds at a distance r.
Applying simple scaling arguments motivated by the attached eddy model, a ‘scaling
transition’ is predicted to occur for q = qcr such that τ(qcr) + τ(−qcr) = 1, where
τ(q) is the set of scaling exponents for single-point MGFs. This scaling transition
is not visible to traditional central moments, but is indeed observed based on the
experimental data, illustrating the capabilities of MGFs to provide new and statistically
robust insights into turbulence structure and confirming essential ingredients of the
attached eddy model.
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1. Introduction and definitions

The topic of turbulent boundary layers has been one of the centrepieces of research
in turbulent flows for many decades (Cebeci & Bradshaw 1977; Pope 2000; Schultz
& Flack 2007; Smits, McKeon & Marusic 2011; Marusic et al. 2013). An important
feature of wall boundary-layer flows is the logarithmic law (Prandtl 1925; von
Kármán 1930) for the mean velocity profile U/uτ ≡ U+ = κ−1 ln(zuτ/ν) + B valid
in the inertial region, where z is the distance to the wall, uτ is the friction velocity
based on the wall stress τw (uτ =√τw/ρ, ρ is the fluid density), ν is the kinematic
viscosity, κ is the von Kármán constant, and B is another constant (see results in
Smits et al. (2011), Jiménez (2013), Marusic et al. (2013), Lee & Moser (2015) for
recent empirical evidence for logarithmic scaling of the mean velocity). Even if only
approximately valid under realistic conditions, such a basic property of wall-bounded
turbulent flows continues to provide predictions in many practical applications, and it
helps to test models, calibrate parameters, and guide the development of theories.

Recently, a logarithmic behaviour has also been observed in the inertial region for
the variance of the fluctuations in the streamwise velocity component. Such behaviour
can be motivated by model predictions based on the ‘attached eddy hypothesis’ by
Townsend (1976) and Perry, Henbest & Chong (1986). There has been growing
evidence (Marusic & Kunkel 2003; Hultmark et al. 2012) for a logarithmic behaviour
of the form 〈u+2〉 = B1 − A1 ln(z/δ), where u+ is the normalized streamwise velocity
fluctuation and δ is an outer length scale. For developing boundary layers the outer
scale is the boundary-layer thickness, while it is the radius for pipes, and the
half-height for plane channels. Empirical data are mostly consistent with a value of
A1 ≈ 1.25 (the Townsend–Perry constant), whereas B1 is flow-dependent and thus not
universal. The logarithmic structure extends to higher-order moments (Meneveau &
Marusic 2013), and high-order structure functions also exhibit logarithmic behaviour in
the relevant range of streamwise separation between two points (de Silva et al. 2015).
Davidson, Nickels & Krogstad (2006) and Davidson & Krogstad (2014) describe
relevant prior work on logarithmic scaling of second-order structure functions.

From the perspective of statistical descriptions of wall-bounded turbulence, high
positive moments emphasize those intense events that deviate significantly from
the mean. In fact, the most extreme value can be obtained from the limit of very
high-order moments, since max(u) = limp→+∞〈up〉1/p. Those intense events, from a
phenomenological perspective, can indicate the presence of certain flow structures, for
example, high- and low-velocity streak structures that are known to be important in
momentum transport in wall turbulence. However, moments do not provide a natural
way to distinguish between the positive and negative fluctuations. Even-order moments
mix the contributions from both positive and negative sides of the distribution.
Odd-order moments emphasize the difference between the contributions of positive
and negative fluctuations, which does not facilitate emphasizing positive and negative
contributions separately. Conditional moments can be used for such discrimination,
but they depend on both the threshold and the order of the moment, increasing
complexity.

Another option to be explored here is provided by the exponential of the random
variable of interest, and then considering various moments of this new random
variable. More specifically, considering streamwise velocity fluctuations in a boundary
layer at a height z, and point-pair distances r in the streamwise direction, we consider
the following statistical objects:

W(q; z)≡ 〈exp(q u+)〉, W(q, q′; z, r)≡ 〈exp[q u+(x)+ q′ u+(x+ r)]〉. (1.1a,b)
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Moment generating functions

These are the single- and two-point moment generating functions (MGFs), respectively.
The parameter q, a real number, serves as a ‘dial’ to emphasize different parts of
the signal, such as high- and low-speed regions, for positive and negative values of
q, respectively. For two-point statistics, choosing different values of q and q′ enables
one to emphasize particular behaviours at points separated by a distance r. One natural
consequence of the definition of MGFs is that single- and two-point moments can be
directly computed from the curvatures of the MGFs at the origin, according to

〈u+p〉 = ∂pW(q; z)
∂qp

∣∣∣∣
q=0

,

〈u+(x)pu+(x+ r)p
′〉 = ∂p′

∂q′p′
∂p

∂qp
W(q, q′; z, r)

∣∣∣∣
q=0,q′=0

.

 (1.2)

It is worth noting here that central moments are solely determined by the moment
generating function at q= 0.

It is also useful to mention that W(q; z) as defined corresponds to a highly
simplified and real-valued subset of the more general object described by the Hopf
equation (Hopf 1952; Monin & Yaglom 2007). This equation describes the full
N-point joint PDF of velocity fluctuations, where N is the total number of different
spatial points needed to describe the flow. Basic interest in the Hopf equation follows
from the fact that it is a linear equation, and therefore self-contained, requiring
no closure. It describes the time evolution of the generalized moment generating
function Ψ (θ) = 〈exp(i

∫
θ(x) · u(x) d3x)〉, where u is the velocity field, iθ(x)

is a complex ‘test field’ which serves as a (very high-dimensional) independent
variable taking on specified values at every point in the flow. As mentioned before,
the Hopf equation is a linear equation for Ψ (θ). However, it includes functional
derivatives with respect to the entire test field θ(x), and solving such functional
equations remains an unattainable theoretical goal. The new quantity W(q; z) may be
considered to be a highly simplified version, a ‘subset’, of Ψ (θ) in which we take
a special-case test field iθj(x) = qδ(x − zk̂)δj1, and similarly for the two-point MGF
iθj(x)= qδ(x − zk̂)δj1 + q′δ(x − rî − zk̂)δj1 (where k̂ and î are the unit vectors in the
wall-normal and streamwise directions, respectively).

Another connection with prior approaches can be highlighted. In the study of
small-scale intermittency and anomalous scaling, high-order moments of turbulent
kinetic energy dissipation normalized by its mean, ε/〈ε〉, such as 〈(ε/〈ε〉)q〉 with
q > 0, are used to emphasize the highly intermittent peaks in dissipation, while
the low-dissipation regions can be highlighted by moments of negative order q < 0
(see e.g. Meneveau & Sreenivasan 1991; O’Neil & Meneveau 1993; Frish 1995).
The analogy is then between u+ and the variable ln(ε/〈ε〉). As will be seen in
the discussion in §§ 2 and 3, an analogy between the momentum cascade and the
energy cascade can be formally made, providing helpful insights for the study of
wall-bounded flows (see also Jiménez 2011).

The discussion here focuses on boundary-layer flows. For the variance of the
streamwise velocity fluctuations to exhibit logarithmic scaling one may hypothesize
that 〈exp(qu+)〉 exhibits power-law scaling with respect to z near q= 0, since

W(q; z)∼
( z
δ

)−τ(q)→〈u+2〉 = ∂2W(q; z)
∂q2

∣∣∣∣
q=0

= B2 − d2τ(q)
dq2

∣∣∣∣
q=0

log
( z
δ

)
. (1.3)
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However, the known logarithmic behaviour of 〈u+2〉 does not imply power-law scaling
of W(q; z) for q values away from q= 0, so this must be tested based on data.

The rest of the paper is organized as follows: the scaling behaviour of the
single-point MGF is investigated in § 2, including empirical evidence of power-law
scaling as a function of height z, for q both positive and negative. Experimental
measurements of flow at Reτ ≈ 13 000 from the Melbourne High Reynolds Number
Boundary Layer Wind Tunnel (HRNBLWT) are considered for this purpose. In § 3, we
consider two-point MGFs and, in particular, provide an ‘attached eddy’ model based
prediction of a scaling transition for W(q, −q; z, r). This behaviour is confirmed by
analysis of experimental data. Statistical convergence of the data is examined in § 4,
and conclusions are provided in § 5. Throughout the paper, u+ is the streamwise
velocity fluctuation normalized by friction velocity and z is the wall-normal coordinate.
The overall picture of wall-bounded flows provided by the Townsend attached eddy
hypothesis (Townsend 1976) is found useful in the discussion and is often invoked
(or implied). In Townsend (1976), as well as in Perry & Chong (1982) and Woodcock
& Marusic (2015), the boundary layer is hypothesized to consist of attached eddies
whose sizes scale with their distance from the wall and whose population density
scales inversely with distance from the wall.

2. Scaling of single-point MGFs

We present results of the MGFs from high-Reynolds-number boundary-layer
turbulence. Hot-wire streamwise velocity measurements at Reτ = 13 000 from the
Melbourne HRNBLWT are analysed (with U∞ = 20 (m s−1), uτ = 0.639 (m s−1) and
δ= 0.319 (m), see Marusic et al. (2015) for further details of the dataset). The MGFs
are computed for various q values in a range between ±2. Statistics are evaluated
at the 50 measurement heights averaging over a time interval of approximately
Tdata = 11 200δ/U∞. The measured MGFs as function of wall distance in inner units
are shown in figure 1(a) for representative values of q. In the range 610 < z+,
z < 0.2δ (see Marusic et al. (2013) for detailed discussion on the range of the log
layer), power-law behaviour is observed. Moreover, there is significant difference
in the scaling exponents of W(q; z) for positive and negative q values of the same
magnitude. This is especially the case for high |q|. The respective scaling ranges
differ depending on the sign of q: for q> 0, the power-law region extends down to
heights z+≈ 400, while for q< 0, the power-law region is shorter, down only to wall
distances of about z+ ≈ 600. Note that z+ ≈ 400 corresponds nominally to the lower
limit 3Re0.5

τ identified in Marusic et al. (2013) as appropriate for the logarithmic
scaling range of the variance. This appears appropriate for the q > 0 cases, but for
q < 0, the range is more consistent with z+ = 600. Since negative q emphasizes the
scaling behaviour of the low-speed regions of the flow, it is concluded that these are
affected by wall and viscous effects up to larger distances from the wall, consistent
with those regions being associated more prevalently with positive vertical velocities.

Equation (1.3) suggests power scaling of W(q; z) near q= 0 and for z values where
the 〈u+2〉 has logarithmic scaling. Such scaling can also be obtained by considering
the velocity fluctuations as resulting from a sum of discrete random contributions from
attached eddies:

u+ =
Nz∑

i=1

ai. (2.1)

Here the ai are random additives, assumed to be identically and independently
distributed, each associated with an attached eddy of size ∼δ/2i if for simplicity we

791 R2-4
available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/jfm.2016.82
Downloaded from http:/www.cambridge.org/core. The University of Melbourne Libraries, on 26 Sep 2016 at 01:30:22, subject to the Cambridge Core terms of use,

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/jfm.2016.82
http:/www.cambridge.org/core


Moment generating functions

2.0

1.5

1.0

0.5

0

105

104

103

102

101

101 102 103 102 103 104104 105

(a) (b)

FIGURE 1. (a) Log–log plot of 〈exp(qu+)〉 against z+ for q=±0.5,±1,±1.5,±2. Solid
symbols are used for positive q values and hollow symbols are used for negative q values.
The extent of the scaling regions, 375 < z+, z < 0.2δ for q > 0 and 610 < z+, z < 0.2δ
for q < 0 are indicated by vertical dashed lines. (b) Premultiplied single-point MGF,
C(q)z+τ(q) · 〈exp(qu+)〉. The prefactor C(q) is determined from the power-law fitting (such
that in the fitted range C(q)z+−τ(q)≈〈exp(qu+)〉). Values of τ(q) used in the premultiplied
quantities are τ = 0.17, 0.54, 0.91, 1.18 for q=−0.5, −1, −1.5, −2 and τ = 0.17, 0.63,
1.27, 2.04 for q= 0.5, 1, 1.5, 2.

choose a scale ratio of 2. The number of additives Nz is taken to be proportional to
the number of attached eddies at any given height z. If the eddy population density
is inversely proportional to z according to the attached eddy hypothesis (Townsend
1976), then Nz is proportional to:

Nz ∼
∫

1
z

dz∼ log
(
δ

z

)
. (2.2)

As a result, the exponential moment can be evaluated

〈exp(qu+)〉 = 〈exp(qa)〉Nz =
( z
δ

)−Ce log〈exp(qa)〉
, (2.3)

where Ce is some constant. Equation (2.3) provides a prediction for the scaling
exponents τ(q):

τ(q)=Ce log〈exp(qa)〉. (2.4)

τ(q) is determined by the probability density function (p.d.f.) of the random additives
a, representing the velocity field induced by a typical attached eddy. If these eddies
are assumed to be purely inertial without dependence on viscosity, then τ(q) would
be expected to be independent of Reynolds number. Furthermore, if a is assumed to
be a Gaussian variable, then (2.4) leads to the quadratic law

τ(q)=Cq2, (2.5)

where C is another constant. In order to compare this behaviour with measurements,
we fit τ(q) from data (as shown in figure 1a) in the relatively narrow and conservative
range 600 < z+, z < 0.2δ, the common range where both positive and negative
q display good scaling. The quality of the power-law fitting is further examined
in figure 1(b), where the premultiplied single-point MGFs are plotted against the
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FIGURE 2. Measured scaling exponents τ(q) (symbols), obtained from fitting W(q; z) as
a function of z, in the range 610< z+ and z< 0.2δ. Error bars show the uncertainty in
the obtained exponents. A quadratic fit around the origin yields τ(q)= 0.63q2 (blue solid
line).

wall-normal distance. The fitted τ(q) curve is plotted against q in figure 2, including
error bars determined by the ratio of the root mean square of the variation in
log(exp(qu+))− τ(q) log(z+) in the fitted range of z+ to the corresponding expected
increase (or decrease) in 〈exp(qu+)〉 indicated by the fitted parameter. Due to statistical
convergence issues, evaluation of τ(q) is limited to |q| < 2. A quadratic fit around
q= 0 is shown with the solid line in figure 2. The fit yields τ(q)= 0.63q2. According
to (1.3),

A1 = d2τ(q)
dq2

∣∣∣∣
q=0

= 2C= 1.26. (2.6)

This is consistent with the prior measurements of the ‘Perry–Townsend’ constant
A1 ≈ 1.25 (Hultmark et al. 2012; Marusic et al. 2013; Meneveau & Marusic 2013).
Studying possible Reynolds number effects falls beyond the scope of this paper.

We can also compute 〈u+2p〉1/p using the single-point MGF 〈exp(qu+)〉. Equations
(1.2), (1.3) and (2.5) lead to 〈u+2〉 = 1 × 2C log(δ/z), 〈u+4〉1/2 = 31/2 × 2C log(δ/z),
〈u+6〉1/3 = 151/3 × 2C log(δ/z) and 〈u+8〉1/4 = 1051/4 × 2C log(δ/z), recovering the
scaling of generalized logarithmic laws (Meneveau & Marusic 2013). Because of
the Gaussianity that underlies (2.5), it is not surprising that Ap/A1 = [(2p − 1)!!]1/p
(see Meneveau & Marusic 2013; Woodcock & Marusic 2015). But, as can be
discerned in figure 2, the quadratic fit becomes highly inaccurate away from q = 0,
consistent with known deviations from Gaussian behaviour of velocity fluctuations in
wall boundary-layer turbulence. Also the data are asymmetric, showing significantly
stronger deviations from the Gaussian prediction for q<0 than for q>0. These results
constitute new information about the flow and may prove important in comparing
with models.

3. Two-point MGFs and scaling transition

In this section, the scaling behaviour of the two-point moment generating function
W(q, q′; z, r)=〈exp[qu+(x, z)+ q′u+(x+ r, z)]〉 in the logarithmic region (for moments
as function of z) and in the relevant range of the two-point separation distance r
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FIGURE 3. Conceptual sketch of a boundary layer with three hierarchies of attached
eddies (I, II, III). θ ≈ 17◦ is the inclination angle of a typical attached eddy; consistent
with a packet structure (Woodcock & Marusic 2015). Both points in set A as well as
in set B are at a height z above the wall and are separated by a distance r in the flow
direction. An attached eddy affects the region beneath it, as is indicated by the shaded
region (Townsend 1976).

is investigated. Note that here we indicate z explicitly to avoid confusion. Before
analysing the data, predictions of scaling behaviour exploiting the assumed hierarchical
tree structure of attached eddies are presented. Figure 3 shows a sketch of attached
eddies. We consider two points at a wall distance z that are separated by a distance
r in the flow (x) direction. Velocity fluctuations at the two points are given by the
random additives ai corresponding to all the eddies ‘above’ a given point. As a result,
two points at a distance r will share a subset of common additives from the larger
eddies that contain both points, while each contains independent additives from eddies
that are not common to both points. This consideration then enables one to factor
the exponentials to separate common and separate contributions. The approach follows
that of Meneveau & Chhabra (1990) and O’Neil & Meneveau (1993) who considered
such factorizations of two-point moments of dissipation rate, and a crucial concept is
that of the size of the smallest common eddy, rc. To find the scaling for W(q, q′; z, r),
the quantity exp(qu+(x, z) + q′u+(x + r, z)) is conditioned based on the size of the
smallest common eddy rc of the points under consideration, and the final result is
given by the sum over all possible common eddy sizes rc:

W(q, q′; z, r)=
δ/tan θ∑
rc=r

〈exp[qu+(x, z)] exp[q′u+(x+ r, z)] | rc〉Prc, (3.1)

where Prc is the probability that the smallest common eddy shared by the two points
(x, z), (x+ r, z) is of size rc. Eddies of size larger than rc affect both points equally.

Also, we make the association that an eddy size of rc in the horizontal direction has
a height zc = rc tan θ . Factorizing the exponential at both points to contributions from
eddies of size larger than rc (heights above zc) and eddies smaller than rc (heights less
than zc) leads to

〈equ+(x,z)+q′u+(x+r,z) | rc〉 =
〈

e(q+q′)u+(x,zc)
equ+(x,z)

equ+(x,zc)

eq′u+(x+r,z)

eq′u+(x+r,zc)

∣∣∣∣∣ rc

〉
. (3.2)

Eddies of size smaller than rc cannot affect both points at the same time, therefore
the differences u+(x, z) − u+(x, zc) and u+(x + r, z) − u+(x + r, zc) (or the ratio of
the exponentials), which according to the random additive ansatz (2.1) contain only
contributions (additives) from eddies of size smaller than rc, can be assumed to be
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statistically independent. Also, they are independent of the additives corresponding to
the velocity difference u+(x, δ)− u+(x, zc). These arguments lead to

〈equ+(x,z)+q′u+(x+r,z) | rc〉 = 〈e(q+q′)u+(x,zc)〉
〈

equ+(x,z)

equ+(x,zc)

〉〈
eq′u+(x+r,z)

eq′u+(x+r,zc)

〉
. (3.3)

Following the same arguments that lead to (2.3), we have〈
equ+(x,z)

equ+(x,zc)

〉
∼
(

zc

z

)τ(q)
(3.4)

and similarly at x+ r involving τ(q′). Substituting (3.4) into (3.2) leads to

〈equ+(x,z)+q′u+(x+r,z) | rc〉 ∼ Prc

(
z
zc

)−τ(q)−τ(q′) (zc

δ

)−τ(q+q′)
. (3.5)

To estimate Prc for some height z, we follow Meneveau & Chhabra (1990) and
O’Neil & Meneveau (1993), and argue that Prc is proportional to the area of a strip
of thickness r along the perimeter of an eddy of size rc (area ∼r rc), divided by the
total area of such an eddy in the plane (∼r2

c ). For point pairs falling within such a
strip, the two points typically pertain to different eddies of size rc. Hence Prc ∼ r/rc,
and after replacing zc = rc tan θ , we can write

〈equ+(x,z)+q′u+(x+r,z)〉 ∼
δ/tan θ∑
rc=r

(rc

δ

)τ(q)+τ(q′)−τ(q+q′)−1 ( r
δ

) ( z
δ

)−τ(q)−τ(q′)
, (3.6)

where a prefactor depending on tan θ has been omitted for simplicity. At high
Reynolds numbers, we can consider the situation δ/tan θ � r. Thinking in terms
of a discrete hierarchy of eddies, the sum in (3.6) becomes a geometric one. It is
dominated either by the value at small scales rc ∼ r or at large scales rc ∼ δ/tan θ ,
depending on the sign of the exponent. Therefore, two asymptotic regimes can then
be identified:

W(q, q′; z, r)∼ (z/δ)−τ(q)−τ(q′)(r/δ)τ(q)+τ(q′)−τ(q+q′), if τ(q)+ τ(q′)− τ(q+ q′)− 1< 0,
W(q, q′; z, r)∼ (z/δ)−τ(q)−τ(q′)(r/δ)1, if τ(q)+ τ(q′)− τ(q+ q′)− 1> 0,

}
(3.7)

indicating a ‘scaling transition’ with respect to r when q and q′ are such that τ(q)+
τ(q′)− τ(q+ q′)− 1= 0.

To examine whether such a scaling transition exists in the measurements, we
consider the specific case q′ = −q, for which the predicted scaling behaviour with
respect to r is:

W(q,−q; z, r)∼
( r
δ

)Φ(q)
, where Φ(q)=min[τ(q)+ τ(−q), 1], (3.8)

since τ(0)= 0 by construction. It is worth noting here that such a scaling transition
is indicative of the ‘tree-like’ or hierarchical and space-filling structure on which the
attached eddies are organized and, since the transition occurs away from q = 0, it
cannot be diagnosed using traditional two-point moments.
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FIGURE 4. Log–log plot of W(q, −q; z, r) against r at z+ = 600, for nine values of q
ranging from 0 to 1.5 (shown values are q= 0, 0.188, 0.375, 0.563, 0.75, 0.938, 1.125,
1.313 and 1.5). The range of r chosen to determine the power-law scaling exponent
(relevant for the log region) is z/tan θ , to 0.15δ/tan θ . At z+= 600, this range corresponds
to (approximately) 2000 < r+ < 6500. This range is indicated by two thin dashed
vertical lines. The fits are indicated by solid lines. (b) Premultiplied two-point MGFs
C(q)r+−Φ(q)W(q, −q; z, r) for representative q values. The prefactor C(q) is determined
from the power-law fitting. Φ(q) used in the premultiplied quantities are 0.18, 0.61, 1.04
for q being 0.375, 0.75, 1.313.

Based on the dataset described before, W(q, −q; z, r) is evaluated and plotted
against r+ in figure 4(a) for a specific wall-normal position in the log region
(here taken at z+ = 600) and for various values of q. We evaluate two-point
correlations using direct summation (and checked that FFT gives essentially the
same results). The relevant range in r for the scaling predicted in (3.7) is between
r = z/tan(θ) (any r below this value corresponds to eddies of size smaller than z
and is thus not relevant) and 0.15δ/tan θ (this is more conservative compared to
0.2δ/tan θ ). For the specific height considered in figure 4, this range corresponds
to 2000 < r+ < 6500 and is indicated by the dashed vertical lines. As can be seen,
W(q,−q; z, r) does exhibit power-law scaling in the relevant range of r. The quality
of the power-law fitting is further examined in figure 4(b), where the premultiplied
two-point MGFs are plotted against the two-point distance r+. Moreover, as is
already clear in figure 4(a), the scaling exponent gradually increases as q increases,
but then the slope ceases to increase further with increasing q. We fit for Φ(q)
in the range of r indicated by the two vertical dashed lines in figure 4. Figure 5
compares the measured Φ(q) and the prediction made in (3.8). Measured values
for τ(q) and τ(−q) are used in (3.8). As can be seen from figure 5, a scaling
transition exists and it appears to be correctly predicted by the scaling analysis
leading to (3.7). The error bars for the fitted slopes are estimated as the ratio
of the root mean square of the variations in log(W(q, −q; z, r)) − Φ(q) log(r)
in the fitting range of r to the expected change indicated by the fitted parameter,
i.e. error = r.m.s.[log(W(q, −q; z, r)) − Φ(q) log(r)]/(Φ(q) log(1r)), where 1r is
range of r used in fitting.

Furthermore, the scaling of W(q, q′; z, r) can be used to compute general moments
such as 〈um(x, z)un(x + r, z)〉 and 〈(u(x, z) − u(x + r, z))2n〉 (the latter are simply
combinations of 〈um

z (x)u
n
z (x+ r)〉). As an example, we compute 〈u+(x)u+(x+ r)〉 using

(1.2), (3.7):
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FIGURE 5. A comparison of the experimental measurements and model predictions of
Φ(q) (symbols and solid line) against q. Φ(q) is the exponent on r in the predicted scaling
behaviour of W(q,−q; z, r).

〈u+(x)u+(x+ r)〉 = ∂

∂q
∂

∂q′
〈equ+(x)+q′u+(x+r)〉

∣∣∣∣
q=q′=0

= 2C log(r/δ)= A1 log(r/δ). (3.9)

This logarithmic scaling is not unexpected since it is consistent with the −1 power law
in the energy spectrum. With 〈u+(x)u+(x+ r)〉 known, we can compute the structure
function as

〈(u+(x)− u+(x+ r))2〉 = 2〈u+2〉 − 2〈u+(x)u+(x+ r)〉 = 2A1 log
(

r
z

)
. (3.10)

This recovers the observation made in de Silva et al. (2015). Higher-order structure
functions can be calculated and logarithmic scalings can be recovered within in this
framework (not shown here for succinctness).

4. Data convergence

Statistical convergence of the statistical moments measured in this work can
be verified by examining the premultiplied probability density function (p.d.f.). In
particular, we examine e±u+P(u+) and e±2u+P(u+), where P(u+) is the single-point
p.d.f. of the velocity at a representative wall-normal height z+ = 610 (which is above
3Re0.5 and is still deep into the log region). For the two-point MGF considered in § 3,
we evaluate the two-point joint p.d.f. P(u1, u2) where u1 and u2 are velocities at two
points x and x+ r, and examine the quantity L(u1) defined as

L(u1)= exp(qu1)

∫
u2

exp(−qu2)P(u1, u2) du2. (4.1)

Since W(q, −q; z, r) = ∫
L(u1) du1, examination of the tails of L(u1) provides

information about statistical convergence in measurements of W(q, −q; z, r). We
examine L(u1) at the same wall-normal height z+= 610 and a representative r+= 2500
(which is within the relevant range z/tan θ < r< 0.15δ/tan θ ).

As can be seen in figure 6, the quantities of interest, i.e. 〈equ+〉 and 〈eq(u+(x)−u+(x+r))〉,
which are equal to the area under these curves, are well captured by the data available,

791 R2-10
available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/jfm.2016.82
Downloaded from http:/www.cambridge.org/core. The University of Melbourne Libraries, on 26 Sep 2016 at 01:30:22, subject to the Cambridge Core terms of use,

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/jfm.2016.82
http:/www.cambridge.org/core


Moment generating functions

–10 –5 0 5 10 –10 –5 0 5 10

L
(u

)

u

(a) (b)

FIGURE 6. Premultiplied p.d.f. exp(u+)P(u+) (a) and L(u) (b).

at least for those q values considered in §§ 2 and 3. Additionally, these figures
illustrate the properties of MGFs that, by raising exp(u+) to positive or negative
powers, regions of high or low velocity are highlighted respectively (as is seen in
figure 6a) and show distinctly asymmetric behaviour.

5. Conclusions

Introducing a new framework for the study of turbulence statistics in the logarithmic
region in boundary layers, basic properties of the single-point and two-point moment
generating function have been investigated. Power-law behaviours are observed in
relevant ranges of z and r (the latter for two-point moment generating functions)
during analysis of experimental measurements. By taking negative or positive values
of the parameter q, the single-point moment generating function W(q; z) can be
used to investigate separately the properties of low-velocity regions and high-velocity
regions. Such distinctions are not easily accessible when using traditional moments.
A scaling transition in the two-point MGF, W(q, −q; z, r), is predicted based on
a simplified model inspired by the attached eddy hypothesis. Such a transition is
indeed observed in the measurements and provides quantifiable evidence that the
attached eddies through the log region are organized in a ‘tree-like’ or hierarchical
and space-filling manner. Such an organization was assumed in previous attached eddy
modelling efforts (Woodcock & Marusic 2015). Deviations from Gaussian statistics
are visible in the scaling behaviour of the MGFs for q away from q = 0. Various
turbulence statistics can be derived from the MGFs and known logarithmic scaling
laws in single-point even-order moments and structure functions can be recovered.
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